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Abstract

A numerical study has been performed on the heat transfer mechanism of Newtonian and non-Newtonian fluids in
2:1 horizontal rectangular ducts. The effects of temperature dependence of viscosity, shear thinning, and buoyancy-
induced secondary flow are all considered. Experimental data for Newtonian fluid, water, and non-Newtonian fluid,
Separan AP-273 solution (0.1%), were chosen for the comparison with the numerical results. For water, the present
numerical results are all in good agreement with the experimental data. The heat transfer enhancement is caused by the
buoyancy-induced secondary flow. For Separan AP-273 solution (0.1%), the present numerical results agree with the
experimental data in the region near the entrance, but the present modeling underestimates the value of Nu in the fully-
developed region. In the region near the entrance, the heat transfer enhancement is caused mainly by the axial velocity
distortion, which is mainly due to the temperature dependence of viscosity. The effect of buoyancy-induced secondary
flow are much weaker in the case for Separan solution rather than that for water. It is mainly caused by the relatively
high viscosity of fluid around the central zone of rectangular duct. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature Pr* Prandtl number defined by Hartnett et al. [3],
A cross-sectional area of a duct Pe/Re*
b viscosity variation parameter defined by equation (1) ¢, uniform heat flux

C aconstant Q dimensionless parameter for a measure of tem-
Cu Carreau number, 2w/D, perature dependence for viscosity, b(q,,Dn/k)
D, hydraulic diameter, 44/S Ra Rayleigh number defined by Hartnett et al. [3],

g acceleration due to gravity

Gr, Grashof number based on constant heat flux,
gp0.D; /v,

Gz Graetz number (Z/Pr Re D)™

h  heat transfer coefficient

k  thermal conductivity

M, N number of division in X, Y direction, respectively
n power-law index

Nu, local Nusselt number

P pressure

Pe Peclet number, Re Pr

Pr Prandtl number, v, /o

Pr, Prandtl number defined by Xie et al. [2], ¥,/o

* Corresponding author.
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pgP(T,— Ty)Di/ 2

Ra, Rayleigh number based on constant heat flux,
PrGr,

Ra,, Rayleigh number, pgfq,DiC,/k*v,

Ra,, Rayleigh number based on constant heat flux
defined by Xie et al. [2], pgBq,DiC, /K",

Ra; Rayleigh number based on wall temperature
defined by equation (17), pgB(T— Ty)Di /a0

Re Reynolds number, WD, /7.,

Re, Reynolds number defined by Xie et al. [2], WD,/7,
Re* Reynolds number defined by Hartnett et al. [3],

pWZ—nDﬁ/|:8n—l <al J;bﬂ?)” K:|

T, bulk temperature
T, wall temperature
T, reference temperature
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u, v, w dimensionless quantity for U, V and W,
respectively

U, V, W velocity components in X, Y, Z directions
x, y, z dimensionless rectangular coordinates

X, Y, Z rectangular coordinates.

Greek symbols

thermal diffusivity

coefficient of thermal expansion with temperature
dimensionless shear rate

dimensional shear rate

dimensionless temperature, (T— Trp)/(qwDu/k)
characteristic temperature, g, Dy/k

characteristic time of the fluid

dimensionless dynamic viscosity

dynamic viscosity

kinematic viscosity

apparent kinematic viscosity defined by Xie et al. [2]
vorticity in the axial direction, du/dy — dv/dx
density.
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Subscripts

ref reference state

w  value at the wall

0 very small (zero) shear rate state

oo very large (infinite) shear rate state.

Superscript
— average value or dimensional state.

1. Introduction

High heat transfer enhancement is required in the
design of modern compact heat exchangers and liquid
cooling for electronic modules. Recently, significant heat
transfer enhancements were reported by Hartnett and his
coworkers [1-3] for viscoelastic fluidsin a 2 : 1 rectangular
channel. The measured heat transfer rates were higher
(up to 300%) than the value for the purely forced con-
vection by a Newtonian fluid. Though the surprising
results of heat transfer enhancement were reported, the
understanding of the mechanism of heat transfer
enhancement for these fluids is still limited, because it
might be caused by shear-thinning, temperature depen-
dence of viscosity, buoyancy-induced secondary flow,
and secondary flow due to normal stress differences.

There are a number of studies on the internal flow heat
transfer in circular tubes for Newtonian fluids [4-10]. But
in the past few years, the study of heat transfer and
flow characteristics in rectangular channels has become
increasing important due to the high heat transfer
enhancement, which was not observed in the circular tube
flow. Kostic [11] addressed the phenomena of laminar
heat transfer enhancement in non-circular duct flow of
certain non-Newtonian fluids. Xie and Hartnett [12]

reported the heat transfer enhancement data for mineral
oilin a 2: 1 rectangular channel. By the numerical studies
of Shin et al. [13] and Chou and Tung[14], the mechanism
of heat transfer enhancement for mineral oil in a 2:1
rectangular channel has been investigated. They found
that for the case of top wall heated, the heat transfer
enhancement is caused mainly by the axial velocity dis-
tortion due to temperature dependence of viscosity. For
the cases of bottom wall heated or both top and bottom
walls heated, the axial velocity distortion is the major
factor in the region near the entrance, while near the
fully-developed region, the heat transfer enhancement is
mainly caused by the buoyancy-induced secondary flow.

From the foregoing paper review, it is found that the
understanding of the mechanism of heat transfer
enhancement for Newtonian fluids, such as mineral oil,
is quite well. But for the non-Newtonian fluids, the study
on the mechanism of heat transfer enhancement is still
inadequate. Gingrich et al. [15] investigated the effect of
shear thinning on laminar heat transfer behavior in a
rectangular duct. Shin and Cho [16] reported the viscosity
data of an aqueous polyacrylamide (Separan) solution.
They found that the viscosity is strongly temperature-
dependent and shear thinning. Gervang and Larsen [17]
consider the ‘elastic effects’ that a non-Newtonian fluid
exhibits in fully developed laminar flow in rectangular
channels. Gao and Hartnett [18] investigated numerically
the fully-developed forced convective flow of a power law
non-Newtonian fluid through rectangular channels. Shin
and Cho [19] considered the effects of temperature-depen-
dent viscosity and shear thinning in the entrance region
of top-heated rectangular channels. It is worthy to note
that they did not include the effect of secondary flow. Gao
and Hartnett [20, 21] used a Reiner—Rivlin constitutive
equation to study heat transfer behavior of non-New-
tonian fluids in the fully-developed region of rectangular
ducts. They reported that heat transfer enhancement is
caused by secondary flows, which arise from normal
stress differences under shearing flow conditions. There
is still no thorough study of mechanism of heat transfer
enhancement for non-Newtonian fluid, such as Separan
solution, in the entrance region of rectangular channels.
In the present paper, the effects of temperature-depen-
dent viscosity, shear thinning and buoyancy-induced
secondary flow are all considered to model the heat trans-
fer behavior for water and Separan solution in the
entrance region of a rectangular channel.

2. Theoretical analysis

Consider a steady three-dimensional laminar flow in
the entrance region of a horizontal 2: 1 rectangular chan-
nel as shown in Fig. 1. The channel is adiabatic at the
side walls. The heating conditions considered in the pre-
sent work follows those in Hartnett and Kostic [3]: upper
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Fig. 1. Physical configuration for upper wall heated condition and the coordinate system.

wall heated, lower wall heated, and both upper and lower
walls heated. The viscosity model used in the present
computation is adopted after Kwant and Ravenstein [22]
who proposed simple power law multiplied by an
exponential decay function of temperature. As con-
sidered in Chou et al. [23]: to avoid singularity in com-
putation, the power law is replaced by the Carreau model
(Bird et al. [24]) which characterize the shear-thinning
effect. The final expression become :

i = exp[—b(T— Tl + (o — A1+ (271"~ D2}
)]
or in dimensionless form:

p= ﬂ” — exp (= Q0) i, + (10— p)[1 + (Cup)2Jr 112}
)

where b is a viscosity variation parameter, 6=
(T—T,/0. is a dimensionless temperature, 0. = ¢, D,/k
is a characteristic temperature, Q = b(q,Dyp/k) is a
measure of magnitude of temperature dependence for
viscosity, and [, is the zero-shear-rate viscosity at T,
I, 1s the infinite-shear-rate viscosity at T, 7 and 7y are

dimensional and dimensionless shear rate, respectively.
(n—1) is the power-law slope of viscosity with respect to
shear rate. 7 is the characteristic time equal to reciprocal
of the shear rate at which shear thinning begins, and it is
also temperature dependent as reported by Shin and Cho
[16]:

;_L = )_“rcfl Owb (3)

where .. represents the value at the reference tem-
perature : 20°C. The exponent { is a constant value — 14.9
for  Separan  AP-273 (0.1%)  fluid, 0, =
(Ty— Te)/(qwDy/k), Cu = AW/D, is the Carreau number
in which W is the averaged axial velocity. When the value
of Q is zero, equation (2) is reduced to the Carreau model.
To summarize the present viscosity model, one observes
two factors influencing the viscosity u. First, the tem-
perature effect on the viscosity is explicitly given in the
exponential form. Second, the Carreau model in the
equation deals with the shear thinning phenomenon.

2.1. Governing equations

The Boussinesq approximation is used to characterize
the buoyancy effect. The viscous dissipation and com-
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pression effects are neglected. The dimensionless vari-
ables are introduced :

X Y __ Z _vu
b 'Tb, “TPrren, YT Uy
1 w Dy, _T-Tu
) = — w=-—= Y= — =
v an W’ Yy W HC 5
B P v P‘—é R _ WD,
P=pmwipy " T T T
0.D;
Pe = PrRe, Grngﬁz b Ra, = PrGr, @
Vo
where
44 Gr.7, 4Dy
Dy = o, Uy=—at= g = DT
=g 0 D, k

By introducing a vorticity function in the axial direc-
tion, ¢ = du/0y—0v/ox, the vorticity—velocity for-
mulation of Navier—Stokes equations can be derived and
shown as follows :
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where V? = (0?/0x*+ 0*/0y?). It should be noted that the
axial diffusion terms in equations (7)—(9) are neglected
under the condition of high Peclet number.

2.2. Boundary conditions

At the entrance z = 0, the flow is considered as hy-
drodynamically fully developed. So the axial velocity w
must satisfy

Viw=C (10)

where C = —(1/Pe)(0p/0z) = constant and the con-
straint: w = 1. Because of symmetry, it suffices to solve
the problem in a half region of the rectangular duct.
Therefore, the boundary conditions are as follows:

u=v=w=0 onall walls

00

—— =1 on the heated wall
on

% =0 on the adiabatic wall

0=u=v=&=0, w=1 attheentrance

o _aw_00_0¢_
“_ax_ax_ax_ax_

at the plate of symmetry. (11)

After the developing velocity profile and temperature
fields along the axial direction are obtained, the local
Nusselt number Nu, can be calculated, and the cal-
culation is based on the overall energy balance for axial
length dz and the temperature gradient on the heated
wall.

Nuy =" L (12)
£ w0, —0y)

where k; is the thermal conductivity of fluid, 0, is the

averaged wall temperature, and 0, is the fluid bulk mean

temperature. Simpson’s rule is used to compute the aver-

age quantities indicated above.

Though the governing equations (5)—(9) are more com-
plicated than those shown in Chou and Hwang [25], the
computation procedure for the simultaneous solutions of
equations (5)—(9) with boundary conditions (10)—(11) is
the same in principle.

3. Results and discussion

Numerical experiments were carried out to ensure the
accuracy of the present results. First, the values of bulk
mean temperature 0, were checked by the known ana-
lytical results 6, = 4z/3 for the cases of upper wall heated
or lower wall heated and 0, = 8z/3 for the case of both
upper and lower walls heated. The above-mentioned ana-
lytical results may be obtained by considering an overall
energy balance for a dimensionless axial length dz. The
deviations were seen to be less than 1.5%.
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A comparison of the present numerical modeling with
the existing experimental data (Hartnett and Kostic [3])
is used to study the mechanism of heat transfer enhance-
ment for water and Separan AP-273 solution (0.1%). But
only the data of Rayleigh number Ra, Reynolds number
Re*, and Prandtl number Pr* were shown in Hartnett
and Kostic [3]. Therefore, the transformation of the fore-
going parameters to the parameters Pr, Ra,and Q, which
are used in the present study, is first required. To obtain
the values of O = b(¢q,,Dn/k) from the available data, the
constant value b must be determined. For water, the
temperature dependence of viscosity is V,y.¢/Vsp:c = 1.816.
Then we can obtain » = 0.019 from equation (1). But for
Separan AP-273 solution (0.1%), there is a large variation
for the value b in equation (1). It will be discussed later.
The following equations are used to calculate
0(= g, Dy/k).

Ra, = Rar X (Nuy)y (13)
Pr Grq = (gﬁDa/az)(quh/k) = Raq.u (14)

where (Nu,)y is local Nusselt number in the fully
developed region. One may ask why we did not calculate
0. directly from the data of Ra, or Gr,. It is worthy to
note that the value of v, in Ra, or Gr, in equation (4) is
rather temperature sensitive, therefore, it is hard to
obtain the corresponding values of 0, in the experimental
work of Hartnett and Kostic [3] directly from the data of
Ra, or Gr,. But the value of « is relatively temperature
insensitive, and 0. can be obtained from the equation
(14).

Figure 2 presents the variation of local Nusselt number
Nu, vs. z for water with only upper wall heated and others
walls adiabatic in a 2:1 rectangular duct. The present
modeling shows an excellent agreement with the exper-
imental data of Hartnett and Kostic [3]. Since only upper
wall is heated, the effect of buoyancy-induced secondary
flow on the value of Nu, is rather weak. The variation of
Nu, vs. z for the case of both upper and lower walls
heated is shown in Fig. 3. One can see that Nusselt num-
ber variations on the upper and lower heated walls are
also shown. On the lower wall, the Nusselt number is at
first decreasing to a local minimum, and then gradually
increasing due to the buoyancy-induced secondary flow.
While on the upper wall, the variation of Nusselt number
is rather similar to that shown in Fig. 2. The present
modeling again shows an excellent agreement with the
experimental data [3]. From the above comparison of the
present modeling with the experimental data [3], we may
say that the heat transfer enhancement mechanism for
water, which is caused by the buoyancy-induced sec-
ondary flow, is rather clear now.

Then we try to study the mechanism of heat transfer
enhancement for non-Newtonian fluids, such as Separan
AP-273 solution (0.1%). The first task is the modeling of
viscosity. The second task is the modeling of the axially

developing secondary flow, which is induced both by the
buoyancy effect and the normal stress differences.

Concerning the modeling of viscosity, the data of vis-
cosity variation for Separan AP-273 solution (0.1%) by
Hartnett [1] and Xie and Hartnett [2] are reshown in Fig.
4. The viscosity data from Xie and Hartnett [2] is those
for 63 h of circulation. In Fig. 4, one can find that the
viscosity is only changed with shear rate, and the data
can be well fitted by equation (1). It is worthy to note
that the temperature dependence of viscosity for Separan
AP-273 solution (0.1%) was not reported by Hartnett [1],
Xie and Hartnett [2], and Hartnett and Kostic [3].
Besides, the temperature effect on viscosity over the stud-
ied temperature range was considered negligible or like
that of water by Kostic [26] and Xie [27]. But Shin and
Cho [19] showed that the viscosity depends both on shear-
rate and temperature as shown in Fig. 5. They pointed
out that one of the possible reasons for this obvious
difference is the effect of solvent. Tap water was used as
the solvent by Kostic [26] and Xie [27], while distilled
water was used by Shin and Cho [19]. We found that
the second possible reason might be that the significant
temperature dependence of viscosity is seen at the zero-
shear-rate range by Shin and Cho [19], but Kostic [26]
and Xie [27] did not show the range of shear rate at which
they evaluated the effect of temperature on viscosity. It
is also noted in Xie [27] that there is a large viscosity
variation with the hours of circulation. In the present
work, we focused on the effects of shear thinning, tem-
perature dependence of viscosity and buoyancy-induced
secondary flow on the laminar heat transfer of Separan
AP-273 solution (0.1%). The effect of the axially develop-
ing secondary flow, which is induced by the normal stress
differences, will be the scope of our future work.

The comparison of the present numerical results of
Nusselt number variation with the data of Xie and Hart-
nett [2] is shown in Fig. 6 for the Separan AP-273 solution
(0.1%). It is noted that only upper wall is heated while
the other three walls are adiabatic. The present numerical
results are obtained by the viscosity modeling, which is
corresponding to the data of 63 h of circulation. To
transfer the value of parameters in Xie and Hartnett [2]
to the present modeling, the following values of viscosity
of fluid for 63 h of circulation in Xie and Hartnett [2]
are considered : at shear-rate 5 = 0.5 (1/s), the viscosity
Iy = 17.56 cp (centipoise) ; at shear-rate 3 = 500 (1/s), the
viscosity fi., = 5.65 cp, and this value is also the reference
value i, ¢ in the present modeling. The values of Prandtl
number Pr and Rayleigh number Ra, will be calculated
by this value. It should be noted that the parameters set :
Ra, =9.35x10% and Pr=37.1 in this numerical work
shown in Fig. 6 is corresponding to the set:
Ra,,=4.83%10°, and Pr,=71.8 in the experimental
work of Xie and Hartnett [27]. The characteristic time
Jer = 0.1 (s), w=10.122 (m s7"), and D, = 0.012 (m),
so the initial Carreau number Cu; = 1w/D, = 1.0167. As



3846

12

P.Y. Chang et al./Int. J. Heat Mass Transfer 41 (1998) 3841-3856

A

For water, only upper wall heated |
: Data of Hartnett & Kostic[3] (Re' =1113,Pr'=6.4, Ra, = 20000-30000) |
: Numerical results (Re = 1081, Pr = 8.57, Ra‘I = 90000, Q = 0.1387)

0 100 200

zx Pe

Fig. 2. The comparison of the present numerical results of Nu with experimental data for water under the heating condition of only

upper wall heated.

already shown in Fig. 4, the viscosity change is rather
small for the fluid of 63 h of circulation. So b = 0.019,
which is usually used for water, is used here as considered
by Xie [27]. From equation (18), the value of ¢,D,/k
can be calculated from the experimental data, and then
0 = b(q,D./k) about 5.0 is obtained. To demonstrate
whether there is heat transfer enhancement or not, the
curve of Nu for purely forced convection (Ra, = 0 and
Q = 0) is also shown in Fig. 6 for comparison. It is seen
that the curve of Ra, = 9.35 x 10°, Pr=37.1and Q = 5.0
falls above the curve of purely forced convection for
Gz < 10* due to the heat transfer enhancement, and the
curve of Ra, = 9.35x 10°, Pr = 37.1 and Q = 5.0 shows
a better agreement with the data of Ra,, = 4.83 x 10°
and Pr, = 71.8 especially in the region near the entrance
(Gz > 50). Compared with the experimental data, the
present modeling still underestimates the value of Nu
in the fully-developed region. This underestimation is
believed to be caused by the exclusion of the secondary
flow induced by the normal stress differences as reported
by Gao and Hartnett [21] in the present numerical mod-
eling. To study the mechanism of heat transfer enhance-

ment, the axial development of velocity distributions
w = W/W along y at the symmetry plane (x = 0.75) are
shown in Fig. 7. It is seen that the velocity distribution is
quite symmetric at Gz = 3 x 10°>. But as Gz decreases,
the velocity distributions are more and more distorted
toward the heated upper wall. By a comparison of Figs
6 and 7, one can find that with stronger velocity distortion
at Gz = 50, there is a stronger heat transfer enhancement
at Gz = 50. This axial velocity distortion is mainly due
to the temperature dependence of viscosity. The dis-
tortion of axial velocity will induce secondary flow. The
secondary flows at Gz = 3x10* and 50 are shown in
Fig. 8(a)—(b). The motions of secondary flow are mainly
upward at Gz = 3 x 10° especially in the central zone of
Fig. 8(a). But it is seen in Fig. 8(b) that there are both
upward and downward motions for secondary flow at
Gz = 50, and a clockwise vortex is formed. But the mag-
nitude of downward motion is smaller than that of
upward motion. This kind of secondary flow pattern is
caused by the combined effects of axial velocity distortion
and buoyancy-induced secondary flow. The value of
Ra, =9.35x 10° is not small but it should be noted that
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Fig. 3. The comparison of the present numerical results of Nu with experimental data for water under the heating condition of both

upper and lower walls heated.

the value of Ra, is evaluated by v,,. In other words, the
actual buoyancy effect in this upper wall heated case is
smaller if the value of Ra, is evaluated by ¥,, the viscosity
around the central zone of rectangular channel. The cor-
responding value is Ra,, = 3 x 10°.

Another heat transfer performance of the Separan AP-
273 solution (0.1%) is shown in Fig. 9 for the case that
both the upper and lower walls are heated while the other
two walls are adiabatic. Hartnett and Kostic’s exper-
imental data [3] is used for comparison with the numerical
results. From the Hartnett’s viscosity data [1], which is
already shown in Fig. 4, one can obtain that: at shear-
rate J = 0.001 (1 s~1), the viscosity Ji, = 216 cp ; at shear-
rate J = 23991 (1/sec), the viscosity i, = iy rer = 3.099
cp; the characteristic time . = 3.02 (s). For different
flow velocities w = 0.85 and 1.1 (m s~ '), the initial
Carreau numbers are Cu;, = 214 and 277, respectively.
Because the viscosity change is very large, b = 0.1 was
considered as shown in Shin and Cho [16] for this simu-
lation, then Q = 19 and 19.4, respectively. At the region
of high Graetz number (near the entrance), the numerical
results are in good agreement with experimental data.

But the present modeling again underestimates the value
of Nu in the fully-developed region. To study the mech-
anism of heat transfer enhancement, the axial devel-
opment of velocity distributions w = W/W along y at the
symmetry plane (x = 0.75) are shown in Fig. 10. It is seen
that the velocity distributions are always symmetric. But
as Gz decreases, the velocity distributions are more and
more flat. The velocity distributions are symmetrically
distorted toward the heated upper and lower walls. By a
comparison of Fig. 9 and 10, one can find that with
stronger velocity distortion at Gz = 200 than that at
Gz = 3 x 10°, there is a stronger heat transfer enhance-
ment at Gz = 200. This axial velocity distortion is mainly
due to the temperature dependence of viscosity. The dis-
tortion of axial velocity will induce secondary flow. The
secondary flows at Gz = 3 x 10° and 200 are shown in
Fig. I1(a)—(b). The motions of secondary flows are almost
symmetric with respect to y = 0.375 at Gz = 3 x 10° in
Fig. 11(a). But it is seen in Fig. 11(b) that the secondary
flow pattern is no more symmetric, and it can be con-
sidered as a superposition of secondary flows which are
induced by the axial velocity distortion and buoyancy
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Fig. 4. Numerical modeling and experimental data of the shear thinning viscosity for Separan AP-273 solution (0.1%).

effect, respectively. By a deeper inspection of the mag-
nitude of secondary flows in Fig. 11(a) and (b), one can
see that the strength of secondary flow in Fig. 11(a) is
almost ten times larger than that in Fig. 11(b). In other
words, the buoyancy-induced secondary flow is rather
weak. The value of Ra, = 1.33 x 10° is not a small value.
But if Ra, is evaluated by ¥, the viscosity around the
central zone of rectangular channel, the corresponding
Ra,, = 1.93x 10" is even one order smaller than that in
Fig. 6.

From the present modeling, we found that the heat
transfer enhancement for Separan AP-273 solution
(0.1%) in the region near the entrance is caused by the
axial velocity distortion. And the axial velocity distortion
is mainly caused by the temperature dependence of
viscosity. But in the fully-developed region, the present
modeling underestimated the value of Nusselt number.
It is believed that the secondary flows caused by the
normal stress differences may be the reason for the heat
transfer enhancement in the fully-developed region as
reported by Gao and Hartnett [21].

4. Concluding remarks

A numerical study has been done to investigate the
laminar flow and heat transfer behaviors of Newtonian
and non-Newtonian fluids in a 2: 1 horizontal rectangu-
lar duct. The effects of temperature dependence of
viscosity, shear thinning, and buoyancy-induced sec-
ondary flow are all considered to model the laminar flow
and heat transfer behaviors. Experimental data for New-
tonian fluid, water, and non-Newtonian fluid, Separan
AP-273 solution (0.1%), were chosen for the comparison
with the numerical results. For water, the present numeri-
cal results are all in good agreement with the experimental
data of Hartnett and Kostic [3]. For Separan AP-273
(0.1%), the present numerical results agree with the data
[2, 3] in the region near the entrance, but the present
modeling underestimates the value of Nu in the fully-
developed region. The key findings are as follows:

(1) For Newtonian fluid, water, Nusselt number
decreases along the axial direction and finally reach
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Fig. 5. Numerical modeling and experimental data of the shear thinning and temperature-dependent viscosity for Separan AP-273
solution (0.1%).
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Fig. 6. The comparison of the present numerical results of Nu with experimental data for Separan solution under the heating condition
of only upper wall heated.
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Fig. 7. Development of dimensionless axial velocity w along y at the symmetry plane for Ra, = 9.35 x 10°, Pr = 37.1 and Q = 5.0 with
only upper wall heated.
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Separan AP-273 (0.1%), only upper wall heated,
with Ra_ =9.35 x 105, Pr=37.1andQ=5.0

The reference vector is for (u? +v?)*® = 2.5x10°
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Fig. 8. Development of secondary flow for Ra, = 9.35x 10°, Pr = 37.1 and Q = 5.0 with only upper wall heated.
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Fig. 9. The comparison of the present numerical results of Nu with experimental data for Separan solution under the heating condition
of both upper and lower walls heated.
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Fig. 10. Development of dimensionless axial velocity w along y at the symmetry plane for Ra, = 1.33 x 10°, Pr =21 and Q = 19 with
both upper and lower walls heated.
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Separan AP-273 (0.1%), both upper and lower walls heated, (2) For non-Newtonian fluid, Separan solution, the

with Ra, = 1.33x 10°, Pr=21and Q = 19. 0s . effects of temperature dependence and shear thinning

The reference vector is for (u? +Vv?*)**=5.0x 10 - . Lo .

Gz=3x10° on viscosity significantly influence the heat transfer
yf | mechanism especially in the region near the entrance.
07 | T T T T T T S S And the heat transfer enhancement is caused mainly

AT T T Y W W N N N W W S by the axial velocity distortion.
sl v A\ \ \ \ \ b N N N i (3) By the inspection of the developments of axial vel-

[ ocity distributions, one can find that the velocity dis-
05 ! PAARNRNRANNAAA | tributions are more and more distorted toward the
TE ooV VNN RNNNNN N AV heated upper wall for the case of only upper wall
0a R W W N | heated. While for the case of both upper and lower
“F ' walls heated, the velocity distributions are more and

S | more flat, the velocity distributions are symmetrically
B v | ) S S s S | W ii;torg:d tovt\:agd the hea.teg upger and(liowel;:1 walls.

[ X e effect of buoyancy-induced secondary flow are
02| R A / LS “ LA [ much weaker in the case for Separan solution than

] / J LSS /J /] that shown in the case for water. It is mainly caused
o1k ' | / / VAVAV4 / /] | by that the value of Rayleigh number is rather low if

[ ! we evaluate it by the viscosity of fluid around the

A N A

T T T T . central zone of rectangular duct. At the central zone
0'00,0 0.1 0.2 03 0.4 05 06 07 x of duct, the temperature and shear rate of fluid are

(a) all relatively lower, and then the viscosity is relatively
higher than that near the walls.

The reference vector —is for (u® + v* )** = 5.0 x 10

Gz=2x10°
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